
1protocol: Virtual Workers on Ethereum

Zack Lawrence
Stanford University

zack@1protocol.com

Axel Ericsson
Stanford University

axel@1protocol.com

June 19, 2017

Abstract

Participation in staking protocols on Ethereum requires capital in ad-
dition to computing power. 1protocol serves as a platform for Ethereum
users with idle capital and workers with excess computing power to jointly
perform work for staking protocols. Herein, we define 1protocol and
present its immediate applications.

Contents

1 Overview 2
1.1 Staking Protocols . 2
1.2 Virtual Workers . 2
1.3 Introducing 1protocol . 3

2 Protocol Schematic 3

3 1client 4
3.1 Structure . 4
3.2 Features . 4

4 The Credit Token: CRED 5

5 1protocol Applications 5
5.1 Fragmented Staking . 5
5.2 Casper Virtual Worker . 6
5.3 Snow Virtual Worker . 8
5.4 Truebit Virtual Worker . 8
5.5 Future Applications . 9

6 Future 9
6.1 Next Steps . 9
6.2 Digital Service Economy . 9

1

1 Overview

1.1 Staking Protocols

Instead of relying on central servers, protocols on Ethereum can provide digi-
tal services by employing decentralized networks of machines (e.g. file storage1,
computation2, and block production3). These protocols ensure correctness using
economic incentives; they compensate machines for accurately performing tasks
and financially penalize them for violating protocol rules. To enforce financial
penalties, these protocols often require worker machines to submit security de-
posits or stakes. As a result, workers lacking capital for deposits often cannot
fully utilize their computing power.

1.2 Virtual Workers

1protocol enables users with idle capital and workers with excess computing
power to jointly perform work for protocols requiring capital. Using 1protocol,
Ethereum users can pool their capital into smart contracts; these smart con-
tracts in turn incentivize workers to leverage the pooled capital to perform work
for staking protocols on Ethereum. We term such constructions: Virtual Work-
ers.

1http://filecoin.io/
2https://truebit.io/
3https://cdn.hackaday.io/files/10879465447136/Mauve%20Paper%20Vitalik.pdf

2

1.3 Introducing 1protocol

Herein, we introduce the 1protocol project. We begin by defining the on-
chain mechanics of 1protocol: the collection of smart contracts enabling the
construction of Virtual Workers. We then present 1client, an extensible client-
side software suite supporting the 1protocol ecosystem. We conclude by dis-
cussing 1protocol's incentive layer —The Credit Token (CRED)—and imme-
diate applications. Specifically, we outline Virtual Workers for several upcoming
Ethereum protocols.

2 Protocol Schematic

In this section, we define the on-chain procedure, enabled by 1protocol, for
constructing Virtual Workers. The procedure involves two parties:

• Capitalist : The Ethereum account supplying capital.

• Operator : The Ethereum account supplying computing power.

Main Procedure. We define the procedure below.

1. A Capitalist submits a Virtual Worker Proposal

A Capitalist may submit a proposal for a Virtual Worker to 1protocol

in the form of a Proposal object.

P = {code, min deposit, hash linked resource, seed}

P: The Virtual Worker Proposal object.

code: EVM bytecode for the proposed Virtual Worker. If an Operator
accepts P, 1protocol initializes a smart contract running code.

min deposit: Amount of Credit tokens an Operator must deposit to
initiate the Proposal (see Credit Section).

hash linked resource: A content-address linking to recommended
client side software for the Operator of P (see 1client Section).

seed: Arbitrary ERC20 tokens; 1protocol transfers the tokens to the
Virtual Worker after initialization.

2. An Operator accepts a Proposal

To accept a Proposal P an Operator must first supply a security deposit
greater than min deposit. 1protocol subsequently deploys a smart con-
tract initialized with code and transfers seed to the newly deployed con-
tract. We term the newly deployed contract a Virtual Worker.

3. Live Virtual Worker

Once deployed, the Virtual Worker contract exposes its capital, seed, to
its Operator; in turn, the Operator can leverage the exposed capital to

3

perform work for Ethereum staking protocols. To incentivize Operators to
perform work, Virtual Worker contracts can call several functions exposed
by 1protocol:

fire(): Confiscates the Operator's security deposit and recycles the
Virtual Worker to Step 1.

punish(amount): Transfers amount funds from the Operator's secu-
rity deposit to the Capitalist.

reward(amount): Transfers amount funds from the Capitalist to the
Operator.

3 1client

To support the 1protocol ecosystem, we will release 1client: an extensible
collection of client-side software. The software will serve as a tool for Operators
and Capitalists to seamlessly interact with 1protocol contracts. In this section,
we outline the software's structure and the features it offers.

3.1 Structure

Consistent with existing Ethereum client implementations, 1client exposes its
functionality via an RPC Interface. Atop the RPC Interface, we provide a
command line interface (REPL) and a GUI. We additionally include a Python
library for developers to write scripts which directly control 1client. Note that
1client ultimately serves as a reference implementation; users remain free to
develop custom software for interacting with the 1protocol ecosystem.

3.2 Features

• Virtual Work
1client enables users to browse and accept pending Virtual Worker Propos-
als; alternatively, using whitelists (arbitrary user-defined filters for Pro-
posals) users can instruct 1client to automatically accept Proposals. Users
can further instruct 1client to immediately execute Operator software after
accepting a Proposal.

• Proposal Analysis
1client supplies tools that enable Operators to analyze pending Proposals.
Notably, 1client provides: whitelists and profit projections.

• Hash-Linked Resources
Recall that Virtual Worker Proposals can contain HLRs: content-addresses
that point to recommended Operator software. Using 1client, Operators
can effortlessly retrieve and begin executing such software.

4

• Work Pools and Funds
Analogous to Virtual Worker Proposals, 1client allows users to construct,
browse, join and monitor Work Pools and Funds. We define Work Pool
and Fund below.

Work Pool: A smart contract enabling an arbitrary number of Operators
to jointly operate a Virtual Worker.

Fund: A smart contract enabling an arbitrary number of Capitalists to
jointly finance a Virtual Worker.

4 The Credit Token: CRED

To participate as a buyer or seller of 1protocol services, Operators and Cap-
italists use our custom ERC20 token: The Credit Token (CRED). Specifically,
CRED occupies several roles in the 1protocol ecosystem:

• Operator staking (see Protocol Schematic)

• Compensating Operators (see Protocol Schematic)

• Funding development of the 1protocol project

• Usage in future Virtual Worker-compatible protocols developed by One
Protocol Inc.

We will present our complete token sale mechanics in a future, stand-alone
document.

5 1protocol Applications

In this section, we outline Virtual Workers for three upcoming Ethereum pro-
tocols: Casper, snow, and Truebit. Our Virtual Workers enable Capitalists and
Operators to collaboratively perform work for these upcoming protocols.

5.1 Fragmented Staking

Recall: to accept a Virtual Worker Proposal, an Operator must supply a security
deposit. Note that an Operator only has an incentive to accept a Proposal if
the capital he will control substantially exceeds the required deposit; otherwise,
the Operator could achieve greater returns using his security deposit to work
for protocols directly. Thus, formally, we require:

Pseed ∗ r > Pmin deposit

Where P is an arbitrary Virtual Worker Proposal and r ∈ [0, 1] is the percentage
of the Virtual Worker's returns the Operator recieves as compensation. Further,
the Operator's security deposit should cover the Virtual Worker's vulnerable
capital: the amount an Operator can destroy before being fired. Thus, we also
expect:

5

Pmin deposit ≥ Pseed ∗ v

Where v ∈ [0, 1] represents the percentage of the Virtual Worker's capital that is
vulnerable. To satisfy these requirements, our sample Virtual Workers employ
a novel mechanism: fragmented staking. We define the mechanism below.

1. The Virtual Worker divides its seed capital into fragments. When per-
forming work for protocols, it uses each fragment as a separate deposit.

2. The Virtual Worker contract enforces that its Operator can destroy at
most a small fraction of its fragments.

3. If an Operator destroys a fragment, the Virtual Worker confiscates a per-
centage of the Operator's security deposit.

Using fragmentated staking, we can reduce the percentage of vulnerable
capital, v, and thus satisfy our requirements.

5.2 Casper Virtual Worker

Ethereum plans to replace its current Proof-of-Work consensus algorithm with
a novel Proof-of-Stake algorithm, Casper. The Casper protocol reaches consen-
sus by incentivizing Ethereum users, termed validators, to propose and bet on
blocks. To participate as a validator in the Casper Protocol, Ethereum users
must supply a deposit of ETH; after supplying a deposit, users can earn rewards
producing new blocks.

More practically, in addition to ETH, participation in Casper requires: suffi-
cient hardware, a solid internet connection, and technical prowess. Thus, re-
gardless of the financial benefits, we expect that many ETH holders will decide
not to participate. Using our Casper Virtual Worker, ETH holders can trust-
lessly transfer their capital to Operators; these Operators then earn rewards
leveraging the capital to participate in Casper.

Our construction consists of three parties4:

• Capitalist : The party supplying ETH.

• Signer : The party signing blocks.

• Producer : The party producing blocks.

Example 1. Let us now define the skeletal procedure followed by our Casper
Virtual Worker:

1. A Capitalist supplies the Virtual Worker with an initial investment of
ETH.

4Signer and Producer both serve as Operators

6

2. The Virtual Worker divides the ETH investment into fragments; each
fragment is used as a deposit in Casper.

3. Whenever Casper elects the Virtual Worker to propose a new block:

(a) The Producer constructs a block and requests a signature on the
block from the Signer.

(b) The Signer evaluates the proposed block, signing and returning the
block only if it passes his evaluation (e.g. the Signer may limit the
rate he signs blocks or only sign blocks with odds below a threshold).

(c) The Producer publishes the signed block.

4. If the Producer constructs a dunkle or triggers a Casper slashing condition,
he loses his security deposit.

5. At the end of the Casper staking period, The Producer and Signer receive
compensation relative to the Casper rewards they accrue.

Note, while a Capitalist can serve as his own Signer, alternatively, a Capitalist
can delegate the task of signing to a trusted Signer such as a friend or reputable

7

organization. To achieve greater security guarantees, we plan to construct a
Decentralized Signer : A decentralized set of machines incentivized to only sign
blocks that satisfy an arbitrary validator strategy. Further, we additionally
plan to construct a Producer Work Pool : a smart contract enabling an arbi-
trary number of Producers to jointly produce blocks.

5.3 Snow Virtual Worker

The snow protocol allows Ethereum accounts to schedule functions to execute
as soon as a provided Boolean function evaluates to true. Specifically, Ethereum
accounts can submit (Boolean function, Callback function) pairs; snow then en-
sures submitted callback functions executes as soon as their respective Boolean
function evaluates to true. To ensure execution of callback functions, snow
assigns worker machines to recurrently execute registered Boolean functions off-
chain. To avoid financial penalties, the assigned workers must alert snow as soon
as their assigned Boolean functions evaluate to true. In turn, snow executes the
respective callback function.

Example 2. Employing fragmented staking, our snow Virtual Worker sub-
divides its capital into multiple fragments, using each fragment as a seperate
deposit with snow. To ensure that the Operator security deposit always covers
the Virtual Worker's vulnerable funds, our Virtual Worker only assigns itself
to snow tasks with minimal penalties. Formally, the Virtual Worker contract
requires: ∑N

i=0 pi ≤ min deposit

Where N is the number of snow tasks assigned to our Virtual Worker and pi is
the maximum penalty snow inflicts if our Virtual Worker fails to notify snow as
soon as task i's Boolean function evaluates to true. To incentivize the Operator,
the Virtual Worker logic ensures:

• If the Operator incurs a penalty on the Virtual Worker by failing to alert
snow as soon as a Boolean function evaluates to true, the Operator im-
mediately loses his security deposit.

• The Operator receives a percentage of the returns he earns the Virtual
Worker.

Assuming the Operator selects tasks with low penalties and supplies an adequate
security deposit, the Operator gains leverage while the Capitalist's vulnerable
funds remain insured.

5.4 Truebit Virtual Worker

Truebit enables trustless off-chain computation on Ethereum. Specifically, Ethereum
users can submit computational tasks to Truebit; Ethereum miners, termed
Referees, elect machines, termed Solvers, to solve submitted tasks. Notably, to

8

participate in the election, Solvers supply minimum security deposits.

Example 3. Employing fragmented staking, our Truebit Virtual Worker sub-
divides its capital into multiple fragments, using each fragment as a seperate se-
curity deposit in Truebit's Solver election. Further, our Virtual worker restricts
the number of tasks its Operator can accept so that the Operator's security de-
posit always covers the Virtual Worker's vulnerable capital. To incentivize its
Operator to submit accurate solutions, our Virtual Worker Contract enforces:

• The Operator loses his Virtual Worker security deposit if he submits an
inaccurate solution to Truebit.

• The Operator receives a percentage of the returns he earns the Virtual
Worker.

5.5 Future Applications

As Casper, snow, and Truebit mature, we will release complete specifications of
our Virtual Workers. Further, we plan to construct Virtual Workers for other
upcoming protocols along with generalized Virtual Workers: Virtual Workers
capable of performing work for multiple staking protocols.

6 Future

6.1 Next Steps

In aggregate, we plan to initially release:

• A collection of Ethereum smart contracts enabling the construction of
Virtual Workers (see Protocol Schematic)

• An extensible software suite enabling seamless interaction with the 1protocol
ecosystem (see 1client)

• An incentives layer powered by a custom ERC20 Token: CRED (see The
Credit Token).

• Virtual Workers for protocols on Ethereum (see Applications)

• Supporting constructions for our Virtual Workers: Work Pools, Funds,
Decentralized Signers and Producers

6.2 Digital Service Economy

1protocol serves as a platform for users with idle capital and workers with ex-
cess computing power to seamlessly perform work together for staking protocols
on Ethereum. Using our platform, users can passively gain interest on their idle
capital. Similarly, workers can gain rewards employing their computing power

9

to leverage capital. In short, 1protocol allows Ethereum users to effortlessly
obtain rewards contributing capital or computing power; it sanctions a digital
economy with all capital and computing power—human and machine–efficiently
allocated.

10

	Overview
	Staking Protocols
	Virtual Workers
	Introducing 1protocol

	Protocol Schematic
	1client
	Structure
	Features

	The Credit Token: CRED
	1protocol Applications
	Fragmented Staking
	Casper Virtual Worker
	Snow Virtual Worker
	Truebit Virtual Worker
	Future Applications

	Future
	Next Steps
	Digital Service Economy

